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This paper introduces a new parametric switching chaotic system (PSCS) and its
corresponding transforms for image encryption. The proposed PSCS has a simple structure
and integrates the Logistic, Sine and Tent maps into one single system. The PSCS shows
more general properties, including the Sine and Tent maps as special instances. It has
complex chaotic behaviors. A novel image encryption algorithm is introduced using the
proposed PSCS and its transforms. Simulation results and security analysis are given to
demonstrate that the proposed algorithm can encrypt different types of images with a
high level of security.
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1. Introduction

Nowadays, information, particularly in the format of
images/videos, plays an increasingly important role in
digital communications and networks. Benefited from
the great advances of network technologies, people all
over the world can easily search information, work on
projects, and communicate with friends via the Internet.
Every single minute, billions and tons of images and videos
are created and transmitted over networks. These images
and videos may contain private or sensitive information
such as personal information, medical record, commercial
designs or secret messages. Improper distribution of them
may cause serious problems to individuals and organiza-
tions. As a result, the increasing demand of providing
security protection to these images and videos has become
an urgent and imperative issue for both individuals and
organizations. Image encryption as an effective tool is used
to enhance security of images and videos by transforming
them into an unrecognized format. In such a way, pro-
tected images and videos can be safely transmitted over
All rights reserved.
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public channels and networks, without worrying about
being intercepted and captured.

Based on different technologies, such as chaos [1–3],
wave transmission [4], fractional Mellin transform [5,6],
p-Fibonacci transform [7], visual cryptography [8], elliptic
curve ElGamal [9], gray code [10], gyrator transform [11]
and so on, many image encryption algorithms have been
developed in recent years. Traditional Advanced Encryp-
tion Standard (AES) originally developed for data encryp-
tion can also be used to encrypt images. However, because
of the lack of consideration about the redundancy property
of images, AES does not show a good performance in
image encryption, especially in encrypting image with
block contents. Due to the fact that chaotic maps show
excellent random behaviors, state ergodicity and sensitiv-
ity to the initial values and system parameters, chaotic
maps have been utilized for image encryption [12–24].
Pareek et al. proposed image encryption algorithms using
chaotic Logistic map in 2006 [14] and 2009 [15], respec-
tively. Singh and Sinha combined the Hartley transform
with the Logistic map for image encryption [17]. Recently,
Wang et al. used the Logistic map to encrypt color images
[1]. However, the variant density function of the Logistic
map has been found to be not uniform [25]. Image
encryption algorithms using one-dimensional (1D) chaotic

www.elsevier.com/locate/sigpro
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2013.04.021
http://dx.doi.org/10.1016/j.sigpro.2013.04.021
http://dx.doi.org/10.1016/j.sigpro.2013.04.021
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sigpro.2013.04.021&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sigpro.2013.04.021&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sigpro.2013.04.021&domain=pdf
mailto:yicongzhou@umac.mo
http://dx.doi.org/10.1016/j.sigpro.2013.04.021


Y. Zhou et al. / Signal Processing 93 (2013) 3039–30523040
map have been shown to be vulnerable to low-compu-
tation-cost analysis using iteration and correlation func-
tions [26].

To overcome the security weakness of existing 1D
chaotic maps, this paper introduces a new parametric
switching chaotic system (PSCS) by embedding three
existing chaotic maps, including the Logistic, Sine and Tent
maps. Under different conditions, the proposed PSCS can
not only revert back into traditional Sine and Tent maps,
but also create more new chaotic sequences. It shows more
general and robust random properties and complex chao-
tic behaviors. The corresponding PSCS transforms are also
presented. Utilizing the proposed PSCS and its transforms,
we introduce a new image encryption algorithm to satisfy
the Shannon's confusion and diffusion properties. Compu-
ter simulations and security analysis are provided to
demonstrate the algorithm's performance with respect to
encryption and security.

This paper is organized as follows. Section 2 designs the
new PSCS and discusses its properties. Section 3 presents
two corresponding PSCS transforms. Section 4 introduces
the novel image encryption algorithm. Computer simula-
tion results and comparisons are presented in Section 5.
Section 6 provides detailed security study and various
attacks to the proposed image encryption algorithm.
Section 7 reaches a conclusion.
2. The parametric switching chaotic system

This section introduces a new chaotic system called the
parametric switching chaotic system (PSCS). Its properties
are also discussed.
2.1. The PSCS

The new PSCS has a simple structure as shown in Fig. 1.
It is a combination of three 1D chaotic maps: the Logistic,
Sine and Tent maps. The output of the Logistic map
controls a switch to select either the Sine map or the Tent
map as a generator to produce the PSCS's output sequence.

The new PSCS is defined by

Xiþ1 ¼
J ðXiÞ Ci≥0:5
SðXiÞ Cio0:5

(
ð1Þ

where Xiþ1 and Xiði¼ 0;1;2;…Þ are the ðiþ 1Þth and ith
state values of the PSCS, respectively; and J ðXiÞ is the
output of the Tent map in Eq. (2) where u is a positive real
Fig. 1. The structure of the proposed PSCS.
constant, u∈½0;2�;

J ðXiÞ ¼
uXi Xio0:5
uð1−XiÞ Xi≥0:5

(
ð2Þ

and SðXiÞ is the output of the Sine map in Eq. (3) where the
control parameter a∈½0;1�:
SðXiÞ ¼ a sinðπXiÞ ð3Þ
and Ci is the output of the Logistic map in Eq. (4) where the
parameter r∈½0;4�:
Ci ¼LðCi−1Þ ¼ rCi−1ð1−Ci−1Þ ð4Þ

2.2. Discussion

As shown in Fig. 1, the proposed PSCS has a simple
structure that combines three traditional 1D chaotic maps.
This provides users the convenience and simplicity for
implementation in both hardware and software.

The PSCS shows more general properties than these
existing ones. Depending on the output values of the
Logistic map, the output sequence of the proposed PSCS
is a mixed series obtained from either the Tent map or the
Since map. The PSCS output is specified by three para-
meters (u, a and r) and two initial values (X0 for the PSCS in
Eq. (1) and C0 for the Logistic map in Eq. (4)). When the
parameter r in the Logistic map varies within the following
ranges, the PSCS will revert back to traditional Tent and
Sine maps.
�
 If r∈½0;2Þ in Eq. (4), 0≤Cio0:5, then the PSCS reverts
back to the Sine map.
�
 If r∈½2;3�, 0:5≤Ci ≤1, then the PSCS becomes the
Tent map.
�
 If r∈ð3;4�, 0≤Ci≤1, the PSCS is a completely new
chaotic system with a mixture output either from the
Sine map or from the Tent maps.

By embedding three existing 1D chaotic maps, the PSCS
shows more complex chaotic behaviors than these existing
1D ones. To quantitatively evaluate their chaotic behaviors,
we use Information Entropy [27] to measure the random-
ness of their output sequences. It is defined by

HðRÞ ¼− ∑
F−1

i ¼ 0
PðR¼ iÞ log2 PðR¼ iÞ ð5Þ

where F is the number of bins; Pð�Þ is the discrete
probability density function. Information Entropy reaches
the maximum value when all signal values are randomly
distributed.

In this experiment, we change values of the parameters
(u, a and r) with the initial values (X0 and C0) fixed. We
then measure the output sequences of the proposed PSCS
and three 1D chaotic maps using Information Entropy in
Eq. (5). The results are shown in Table 1 where we choose
F¼256 and parameters of the Logistic, Tent and Sine maps
to be the same as that of the PSCS. As can be seen, the PSCS
has larger Information Entropy values compared to three
existing ones under the same parameter settings. The PSCS
output is more randomly distributed.
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Due to the fact that traditional 1D chaotic maps show
chaotic behaviors only when their parameters are limited
within a specific range, the proposed PSCS, however, has
chaotic behaviors with parameters being selected from a
much larger dynamic range. Even in the worst situation in
which the Logistic map loses its chaotic behaviors (e.g. its
parameter is out of the specific range where the Logistic map
has chaotic behavior), the proposed PSCS reverts back to the
Tent map or the Sine map and still keeps good chaotic
behaviors.

Based on Eqs. (1)–(4), the PSCS contains three parameters
(u, a and r) and two initial values (X0 and C0). Similar to other
chaotic systems, the proposed PSCS is extremely sensitive to
its parameters and initial values. To verify this, a set of tests
has been done and the results are shown in Fig. 2. Fig. 2(a)–(c)
plots the correlation of two output sequences of the proposed
Table 1
Information Entropy test.

Parameter
setting

Logistic map
ðrÞ

Tent map
ðuÞ

Sine map
ðaÞ

PSCS
ðr;u;aÞ

r u a

3.5 1.5 0.90 2.0202 6.5296 6.9781 7.3082
3.6 1.6 0.92 6.3222 6.8890 7.2188 7.5917
3.7 1.7 0.94 7.0919 7.2205 1.6378 7.6292
3.8 1.8 0.96 7.3686 7.4872 7.4558 7.7658
3.9 1.9 0.98 7.4485 7.7420 7.6723 7.8461
4.0 2.0 1.00 7.6864 0.0589 7.6527 7.7578

Fig. 2. Correlations of two PSCS's output sequences when slightly changin
u¼ 2; r ¼ 3:99; a¼ 0:98; C0 ¼ 0:3; X0 ¼ 0:1. (a) a; (b) r; (c) u; (d) X0; and (e) th
PSCS when a tiny change, such as 10−14, is made to one of its
parameters. Fig. 2(d)–(e) shows the cases when the PSCS's
initial values have a tiny alteration (10−14). For example,
Fig. 2(a) plots the correlation of two output sequences,
S1 and S2. S1 is obtained by the PSCS with parameter a¼1
while S2 is generated by the PSCS with the same parameters
except for setting a¼0.99999999999999. If S1 and S2 are
similar (or highly correlated), all points will be located in
or close to the diagonal line. As can be seen in Fig. 2(a), all
points spread over the entire data range. This means that a
tiny change (10−14) of the parameter a leads to completely
different output sequences of the PSCS. Similar results are
obtained by changing other parameters and initial values as
shown in Fig. 2(b)–(e). These results demonstrate that the
proposed PSCS has an excellent chaotic property, namely a
strong sensitivity to its parameters and initial values.

Chaotic maps are frequently used for image encryption
due to their excellent chaotic behaviors and sensitivity to
their initial values and parameters. The PSCS contains more
parameters and initial values than existing 1D chaotic maps.
From the security point of view, it ensures more difficulty for
the unauthorized users to predict the PSCS's output. This
makes the PSCS more suitable for security applications.

In summary, the proposed PSCS has at least the
following excellent properties: The PSCS
(1)
g pa
e ini
uses a simple structure to integrate three traditional
1D chaotic maps into one single system,
(2)
 generates different chaotic sequences while including
the Tent and Sine maps as its special instances,
rameters and initial values only 10−14. Their initial settings are
tial value of the Logistic map, C0.



Y. Zhou et al. / Signal Processing 93 (2013) 3039–30523042
(3)
 is strongly sensitive to its parameters and initial states,

(4)
 has more complex chaotic behaviors,

(5)
 has chaotic behaviors within much larger ranges of

parameter selection than those existing maps,

(6)
 is well suitable for security applications, such as image

encryption.
Fig. 3. The flowchart of the PSCS-IE algorithm.

3. The PSCS transforms

This section introduces the new one-dimensional (1D)
and two-dimensional (2D) PSCS transforms. The 1D-PSCS
transform is to transform a PSCS chaotic sequence into an
integer sequence. The 2D-PSCS transform will be used for
pixel permutation in the new image encryption algorithm
proposed in Section 4.

3.1. The 1D-PSCS transform
Definition 1. Let Xiði¼ 1;…;NÞ be the PSCS chaotic
sequence with length of N generated by Eq. (1), Ti be
an integer sequence containing N non-repeat integers
and 1≤Ti≤N. The following transformation is called the
1D-PSCS transform:

Ti ¼ 1þ ⌊ðXi þ εÞN⌋ mod N ð6Þ
where ⌊ � ⌋ denotes the floor function, and ε is an offset
constant, 0≤εo1.

The 1D-PSCS transform is to map a PSCS chaotic sequence
ðX1;X2;…;XNÞ into an integer sequence ðT1; T2;…; TNÞ,
which is actually a permutation of the integer sequence
ð1;2;…;NÞ. Varying the parameters or initial values of the
PSCS will obtain a different PSCS sequences in Eq. (1) and a
corresponding different integer sequences in Eq. (6). Thenwe
obtain different permutations of ð1;2;…;NÞ.

There may be some elements with the same values in
the PSCS sequence ðX1;X2;…;XNÞ. The offset constant ε is
designed to deal with this situation. Its default setting is
ε¼ 0. A different value will be set to ε when there exists
duplicate values in the PSCS sequence. In this manner,
elements with duplicate values at different locations in the
PSCS sequence ðX1;X2;…;XNÞ will generate different non-
repeat integers in the output sequence ðT1; T2;…; TNÞ. For
example, assume that the PSCS sequence is (0.1, 0.3, 0.2,
0.5, 0.7, 0.9, 0.4, 0.8, 0.1, 0.5), thus N¼10. ε will be set to 0
except for ε¼ 0:5 when X9 ¼ 0:1 and X10 ¼ 0:5. Thus, the
output integer sequence will be (2, 4, 3, 6, 8, 10, 5, 9, 7, 1)
which is a permutation of (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

The 1D-PSCS transform is excellent to be used for
scrambling a data stream such as a text string or audio
signal. It can also be applied to change pixel locations
within an image. However, this has to be accomplished
line by line, requiring a high computation cost. To over-
come this problem, a more efficient 2D-PSCS transform is
then introduced for image scrambling in Section 3.2.

3.2. The 2D-PSCS transform
Definition 2. Let I be an original image with size of M�N,
Tr and Tc be integer sequences generated by Eq. (6) with
length of M and N, Wr and Wc be the row and column
matrixes, respectively. The 2D-PSCS transform is defined as

S¼WrIWc ð7Þ
where S is the scrambled image and

Wcði; jÞ ¼
1 for ðTcðjÞ; jÞ
0 others

�
ð8Þ

Wrðk; lÞ ¼
1 for ðk; TrðkÞÞ
0 others

�
ð9Þ

where i; j; k; l are integers, 1≤ i; j≤N, and 1≤k; l≤M.

The 2D-PSCS transform is an effective and robust method
to change all data locations within a 2D data matrix such as a
grayscale image. Applying the 2D-PSCS transform only one
time to an image can completely change all its pixel loca-
tions, achieving excellent diffusion property. The decryption
process requires only one-time applying of corresponding
reverse transform [7] to reconstruct the original data matrix.
The inverse 2D-PSCS transform is defined in

I ¼W−1
r SW−1

c ð10Þ

4. The new PSCS-based image encryption algorithm

This section introduces a new simple and effective
algorithm for image encryption using the proposed PSCS
and its transforms. The algorithm is called the PSCS-IE
algorithm. It encrypts the original images using a set of
substitution and permutation (SP) processes as shown
in Fig. 3. The encrypted image and decryption key are
obtained after Q iterations of SP processes. A pseudo code
of this algorithm is provided in Algorithm 1.

Algorithm 1. The proposed PSCS-IE algorithm.

Input: The encryption key Ke ¼ ðQ ; u; r; a; C0; X0Þ and original
image with size of M�N

1.
 Set the length of the PSCS sequence: L←Ls þ Lp , where Ls ¼M � N

for substitution and Lp ¼M þ N for permutation

2
 for i¼1 to Q do

3
 Update the initial value of the Logistic map CðiÞ

0 based on Eq. (11)

4
 Generate the PSCS sequence X with length of L using Eq. (1) and Ke
5
 Xs←Xð1 : LsÞ for substitution, Xp←XðLs þ 1 : LÞ for permutation

6
 Perform substitution to the input image using Eq. (15) and Xs
7
 Apply 2D-PSCS transform to the image using Xp and Eqs. (6) and (7)

8
 end for
Output: The encrypted image and decryption key

Kd ¼ ðQ ;u; r; a;CðQ Þ
0 ;X0Þ

The encryption key Ke consists of the iterations (Q) of the
SP processes, the PSCS parameters (u; r; a), initial values of



1 The Matlab code is located in http://buchholz.hs-bremen.de/aes/
aes.htm.
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the PSCS ðX0Þ and Logistic map ðC0Þ. The initial value of the
Logistic map (C0) keeps updated in the beginning of each SP
process based on Eq. (11). C0 is added with information of
the original image in the first SP process, and then keeps
updating in each iteration by adding the initial PSCS value
(X0) in the previous SP process:

CðiÞ
0 ¼

1
2ðC0 þ DÞ for i¼ 1
1
2ðC

ði−1Þ
0 þ X0Þ for i41

8<
: ð11Þ

where CðiÞ
0 and Cði−1Þ

0 are initial values of the Logistic map in
the ith and ði−1Þth SP processes, respectively; and D collects
information of the original image Iðm;nÞ with size of M�N
as defined by

D¼
D1 for D1≠0
hex2decðh1h2h3h4h5h6h7h8Þ � 10−10 for D1 ¼ 0

(

ð12Þ
where

D1 ¼
1

108 ∑
M

m ¼ 1
∑
N

n ¼ 1
Iðm;nÞ

� �
mod 1 ð13Þ

hi ¼ hashi⊕hashiþ1⊕hashiþ2⊕hashiþ3 ð14Þ
where hashi is the ith hexadecimal number, when the MD5
hash with 128-bit hash value is expressed as a 32 digit
hexadecimal number [28–30].

By updating the initial value of the Logistic map, a
completely different PSCS sequence is generated in each SP
process, improving diffusion and confusion properties of
the encrypted images. The PSCS sequence is then divided
into two subsequences, Xs with length of ðM � NÞ for sub-
stitution, and Xp with length of ðM þ NÞ for permutation.

The substitution process is an effective method to
flat the image histogram because encrypted images with
random-like histogram distribution are known to have
excellent performance against statistics attacks [31]. It is
defined in

Eðm;nÞ ¼ ð⌊XsðkÞ � F⌋þ Iðm;nÞÞ mod F ð15Þ
where ⌊ � ⌋ is the floor function; m;n; k are integers,
1≤m≤M, and 1≤n≤N; Xs(k) is the PSCS sequence for
substitution where k¼ ðm−1ÞLþ n; Iðm;nÞ and Eðm;nÞ
denote the input and output images of the substitution
process; F is the maximum value of the input image
Iðm;nÞ, e.g. F¼256 for grayscale image.

Correspondingly, in image decryption, the substitution
process will use Eq. (16) to reconstruct image pixel values

Iðm;nÞ ¼ ð⌊XsðkÞ � F⌋−Eðm;nÞÞ mod F ð16Þ
The 2D-PSCS transform as an image permutation process

has the excellent property of breaking the correlation of
image pixels. Xp with length of ðM þ NÞ is used to generate
the row and column coefficient matrixes Wr and Wc,
respectively, for the proposed 2D-PSCS transform in Eq. (7).
Applying the proposed 2D-PSCS transform efficiently
changes image pixel locations after the substitution process.
It further improves the diffusion and confusion properties.

The users have the flexibility to choose the iterations Q
of the SP process for image encryption in practical applica-
tions. Increasing iterations Q results in a higher level of
security for encrypted images while requiring more com-
putation cost. The users should balance the tradeoff
between the security level and the encryption speed.

Image decryption is a simple inverse process of the
proposed PSCS-IE algorithm as shown in Algorithm 1.
It uses the decryption key Kd to generate the PSCS
sequence, applies the inverse PSCS transform in Eq. (10)
for permutation, and use Eq. (16) for substitution. After the
same iterations of the inverse SP processes, the original
image is reconstructed.

In short, the proposed PSCS-IE algorithm
(1)
 is a simple and robust encryption method with an
enhanced level of security;
(2)
 offers the users the flexibility to select different itera-
tions of the SP process to achieve their requirements of
security and computation cost;
(3)
 has the excellent property in terms of confusion and
diffusion;
(4)
 has a larger security key space.
5. Simulation results and comparisons

To show the performance of the proposed PSCS-IE algo-
rithm, this section provides simulation results obtained
from different images. Note that this paper sets the para-
meters and initial values in the encryption and decryption
keys with length of 14 decimals for our simulations unless
specified. However, the users have the flexibility to choose
any other settings to meet their requirements in terms of
security and computation.

The PSCS-IE algorithm can encrypt images with flexible
iterations of the SP processes. Fig. 4(b)–(d) provides an
observation of the SP encryption performance with differ-
ent iterations. To withstand statistic attacks, one goal of
the proposed PSCS-IE algorithm is to make the encrypted
image unrecognizable and its histogram uniform-distrib-
uted, no matter how the histogram of the original image
looks like. From results in Fig. 4(c), two iterations of SP
processes are enough to achieve this goal. Thus, in all
simulations and tests in the rest of this paper, we apply 2
iterations of the SP processes to encrypt images in the
proposed PSCS-IE algorithm.

The proposed PSCS-IE algorithm has been applied to
different types of images such as binary, grayscale and
color images, as well as biometrics and medical images.
Fig. 5 shows the encryption results of different images. The
encrypted images are noise-like images without any leak-
age of the original information. This demonstrates that the
proposed PSCS-IE algorithm can be used to fully protect
various images for diverse applications. The reconstructed
images are same as the original ones.

Fig. 6 compares the proposed PSCS-IE algorithm
with the Chen's algorithm [20] and AES1 [32]. The original
binary image in Fig. 6(a) is a difficult case for image encryp-
tion because it contains large homogeneous regions.

http://buchholz.hs-bremen.de/aes/aes.htm
http://buchholz.hs-bremen.de/aes/aes.htm


Fig. 4. Image encryption using the proposed PSCS-IE algorithm with different iterations of the SP processes: (a) the original image and its histogram;
(b)–(d) are encrypted images and their histograms; (b) one iteration; (c) two iterations; (d) three iterations.

Fig. 5. Encrypting different images using the proposed PSCS-IE algorithm. The top, middle and bottom rows show the original, encrypted, reconstructed
images, respectively. (a) grayscale image; (b) color image; (c) fingerprint (biometrics); (d) medical image.
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The encrypted images by the Chen's algorithm and AES
contain visual histogram patterns. The encrypted image
in Fig. 6(d) by the AES has the information leakage.
The proposed PSCS-IE algorithm successfully encrypts this
difficult example as shown in Fig. 6(d). It outperforms
other two algorithms.



Fig. 6. Binary image encryption using different algorithms: (a) the binary original image and its histogram; (b)–(d) are encrypted images and their
histograms; (b) the proposed PSCS-IE algorithm; (c) the Chen's algorithm [20]; (d) the AES [32].
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6. Security analysis

Security is a vital issue and should be carefully taken
into consideration both for the images to be protected and
for the encryption algorithms. This section provides a
detailed study of analyzing the security issues of the
proposed PSCS-IE algorithm. The study includes the secur-
ity key analysis, statistic analysis, and various attacks.

6.1. Security key analysis

Security keys are extremely important to an image
encryption algorithm for ensuring the security of pro-
tected images in against the differential attacks and brute
force attacks. Generally speaking, the security of an image
encryption algorithm depends on its security key design
[33]. An encryption algorithm should contain a sufficiently
large key space and should be strongly sensitive to the
change of security keys [34].

6.1.1. Security key space
As mentioned in Section 4, the security key of the

proposed PSCS-IE algorithm is a combination of six subkeys:
the iterations (Q) of the SP processes, the PSCS parameters
(u; r; a), and initial values (C0, X0). To ensure that the PSCS
has the best random and complex properties, all parameters
are set within the range where each 1D chaotic map shows a
strong chaotic behavior, i.e. r∈½3:8;4� for the Logistic map,
a∈½0:9;1� for the Sine map, and u∈½1:5;2� for the Tent map.
The possible choices of these subkeys are ideally infinite,
because they could be decimal numbers with an arbitrary
length. As mentioned in the beginning of Section 5, this
paper sets each subkey with length of 14 decimals. Conse-
quently, the possible choices of r; a; u are 0:2� 1014, 0:1�
1014 and 0:5� 1014, respectively. The initial values of the
Logistic map and PSCS are within [0,1], and also set to be
different values with length of 14 decimals. Therefore, the
security key space of the proposed PSCS-IE algorithm is at
least 1068 which is sufficiently large to withstand the brute
force attacks [34].

6.1.2. Key sensitivity
In addition to a sufficiently large security key space, an

encryption algorithm should also be strongly sensitive to
its secure key changes. Here, we perform sensitivity tests
in both the encryption and decryption processes as shown
in Figs. 7–9.

Fig. 7 shows encryption results using the initial security
key set and modified sets with a tiny change (10−14)
applied to each subkey, respectively. As can be seen in
Fig. 7(b)–(g), all encrypted results look like noise images
with uniform distributed histograms. Images in Fig. 7(h)–
(l) are pixel-to-pixel differences between two encrypted
images obtained by the initial and modified security key
sets. These results demonstrate that slightly changing any
subkey will lead to a completely different encryption
result. The proposed PSCS-IE algorithm is strongly sensi-
tive to the security key changes.

To test the key sensitivity in image decryption, a tiny
change (10−14) is also applied to each subkey. Fig. 8(c)–(h)
shows the decryption results. As can be seen, the original
image can be completely reconstructed in Fig. 8(c) only
when the initial (correct) decryption key set is being
utilized. However, any tiny change in subkey(s) will result
in an unsuccessful decryption as shown in Fig. 8(d)–(h).
These decryption results are unrecognized and their histo-
grams keep uniform distributed. This ensures that the
original image contents are fully protected.

Fig. 9 shows another key sensitivity test with each
subkey set to 16 decimal length and a tiny change
(10−16) applied to several subkeys. Fig. 9(b)–(c) shows
the noise-like encryption results using the initial key
setting and the modified key setting with a slight change
(10−16) applied to parameter (u). The pixel-to-pixel differ-
ences between two encrypted images and their histograms
are shown in Fig. 9(d). These demonstrate that a slight



Fig. 7. Image encryption by slightly changing (10−14) the PSCS's parameters and initial values: (a) the original image and its histogram; (b)–(f) are
encrypted images and their histograms obtained by slightly changing (10−14): (b) X0; (c) C0; (d) r; (e) u; (f) a; (g) the encrypted image and its histogram
using the initial security key set; (h)–(l) are image differences and their histograms; (h) differences between (b) and (g); (i) differences between (c) and (g);
(j) differences between (d) and (g); (k) differences between (e) and (g); (l) differences between (f) and (g).
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change (10−16) in subkey will lead to significant changes in
the encrypted image. For image decryption, only using the
correct decryption key setting is able to completely recon-
struct the original image as shown in Fig. 9(e) which is
reconstructed from the image in Fig. 9(b). Otherwise, even
if, for example, there is a tiny change (10−16) in X0 in the
decryption key, the reconstructed image is a noise-like
image as shown in Fig. 9(f), which is completely different
from the original one. These results imply that image
reconstruction performs successfully only when the cor-
rect decryption key is being utilized.

6.2. Statistic analysis

Except for the histogram property of the encrypted
image discussed in Section 5, this section analyzes security
of the proposed PSCS-IE algorithm in terms of two statistic
analysis methods including correlation analysis and Infor-
mation Entropy.

6.2.1. Correlation analysis
A visually good-looking image generally contains pixels

with high neighborhood correlations while a random-like
image does not. An encryption algorithm intends to transform
an original good-looking image into a random-like encrypted
image with low correlation among neighborhood pixels.

2048 sample pixels are randomly selected from the
original and the encrypted images in Fig. 4(a) and (c),
respectively. Fig. 10 plots the distribution of these sample
pixels and their neighborhood pixels at the horizontal,
vertical, and diagonal directions. As can be seen on the top
row, the pixels converge to the region in or close to the
diagonal line y¼x. This means that the neighborhood pixels
in the original image in Fig. 4(a) are equal or close to each
other, and thus have a high correlation. However, seen from
the bottom row in Fig. 10, pixel values in the encrypted
image in Fig. 4(c) are distributed to the entire data range of
the image. This indicates that the neighborhood pixels in the
encrypted image have little correlations showing good con-
fusion property of the proposed PSCS-IE algorithm.

To quantitatively evaluate the correlations, we calculate
correlation coefficients of neighborhood pixels at the
horizontal, vertical and diagonal directions using [35]

corrðx; yÞ ¼ E½ðx−μxÞðy−μyÞ�
sxsy

ð17Þ

where μx and μy are the mean values of x and y, and sx and
sy denote the standard deviations of x and y, respectively;
The function E½�� is the expected value.

A correlation value close to 1 means a strong relationship
between pixels and their neighbors, while the correlation
value approaching to 0 indicates no or a weak relationship
between pixels. Table 2 lists the correlation coefficients of
neighborhood pixels in the encrypted images in Fig. 6(b)–(d)
by the proposed PSCS-IE, Chen's and AES algorithms, respec-
tively. As can be seen in Table 2, the PSCS-IE algorithm has
the lowest correlation values at all directions and thus
outperforms other two algorithms.



Fig. 8. Image decryption using different security keys: (a) the original image and its histogram; (b) the encrypted image and its histogram; (c) the
reconstructed image using the correct key set and its histogram; (d)–(h) are the reconstructed images and their histograms using a tiny change (10−14) in
(d) r; (e) u; (f) a; (g) C0; (d) X0.
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6.2.2. Information Entropy
In addition to evaluate signal randomness, Information

Entropy can also be used to assess whether an encrypted
image is a random-like image with pixel values randomly
distributed. In this case, F and R in Eq. (5) represent the
maximum and individual pixel values in an image, respec-
tively. For a gray image, F¼256 and each pixel can be
represented by 8 binary bits. The maximum of Information
Entropy HðRÞ ¼ 8:0 when PðR¼ iÞ ¼ 1

256, namely the image
R is uniformly distributed.

28 test images are obtained from the USC-SIPI image
database.2 Table 3 lists the measure results of the Infor-
2 The USC-SIPI image database is located in http://sipi.usc.edu/
database.
mation Entropy of the images before and after being
encrypted by the proposed PSCS-IE algorithm. As can
be seen, Information Entropy scores of the PSCS-IE's
encrypted images are 7.9988 in average. It is much close
to the maximum value of Information Entropy. This means
that the encrypted images are uniformly distributed. The
proposed PSCS-IE algorithm shows excellent performance
in image encryption.

6.3. Differential attacks

Differential attack is a form of cryptanalysis in which an
attacker tries to recover the security key of the encryption
algorithm by checking the non-random behaviors and
properties caused by a set of predefined differences
through each encryption step [34]. According to the

http://sipi.usc.edu/database
http://sipi.usc.edu/database


m ¼ 1 n ¼ 1

Fig. 9. Key sensitivity test using a longer subkey length (16) and a tiny change (10−16) applied to subkeys: (a) the original image; (b) the encrypted image
using initial security key setting with each subkey length of 16 decimals; (c) the encrypted image by slightly changing (10−16) in parameter (u); (d) the
differences between (b) and (c) and their histogram; (e) the reconstructed image of (b) using the correct key set and its histogram; (f) the reconstructed
image of (b) using a slight change (10−16) in X0 and its histogram.
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concept of differential attack, we use two images with only
a pixel difference between each other, and check their
corresponding encrypted images using the proposed PSCS-
IE algorithm.

A modified image is generated by setting 0 to a pixel
located in position (150, 100) in a Clock image with size of
256�256. The proposed PSCS-IE algorithm is used to
encrypt both the original and modified images. We then
obtain the pixel-to-pixel differences between two clock
images and between two corresponding encrypted ones as
shown in Fig. 11(c). As can be seen, a single pixel change in
the original image results in significant changes spreading
over the entire encrypted image. The attacker is unable to
find any useful cue using the differential cryptanalysis. The
proposed PSCS-IE is able to withstand differential attacks.

To quantitatively evaluate this differential effect to
encrypted images, we use the Unified Average Changing
Intensity (UACI) and Number of Pixel Change Rate (NPCR)
as defined in Eqs. (18) and (19) where E1 and E2 are two
encrypted images with size of M � N [20]:

UACI¼ 1
MN

∑
M

∑
N jE1ðm;nÞ−E2ðm;nÞj

255

� �
� 100% ð18Þ



Fig. 10. Correlation of neighborhood pixels at different directions before and after encryption. The top row shows neighborhood pixel correlation in the
original image in Fig. 4(a); the bottom row shows neighborhood pixel correlation in the encrypted image in Fig. 4(c). (a) Horizontal direction; (b) vertical
direction; (c) diagonal direction.

Table 2
Correlation coefficients of neighborhood pixels at different directions.

Encryption algorithm Vertical Horizontal Diagonal

Original image 0.9420 0.9455 0.9205
PSCS-IE −0.0054 0.0045 0.0031
Chen's [20] 0.9728 0.0442 0.0469
AES [32] 0.8018 −0.0160 −0.0140

Table 3
Performance measures of the PSCS-IE algorithm to different images with
respect to Information Entropy, differential analysis and strict avalanche
criterion (SAC).

File name Information entropy
analysis

Differential
analysis

SAC

Original
image HP

Encrypted
image HS

NPCR
(%)

UACI
(%)

NBCR
(%)

5.1.09 6.7093 7.9966 99.60 33.14 50.08
5.1.10 7.3118 7.9971 99.61 33.24 50.04
5.1.11 6.4523 7.9975 99.64 33.72 49.98
5.1.12 6.7057 7.9972 99.60 33.56 49.96
5.1.13 1.5483 7.9965 99.63 33.77 50.04
5.1.14 7.3424 7.9977 99.62 33.21 50.05
5.2.08 7.5237 7.9991 99.61 33.31 49.96
5.2.09 6.9940 7.9992 99.60 33.62 50.08
5.2.10 5.7056 7.9991 99.61 33.31 50.05
5.3.01 7.5237 7.9998 99.60 33.42 49.98
5.3.02 6.8303 7.9996 99.62 33.29 50.01
7.1.01 6.0274 7.9990 99.59 33.25 50.07
7.1.02 4.0045 7.9991 99.62 33.53 49.97
7.1.03 5.4957 7.9990 99.59 33.27 50.01
7.1.04 6.1074 7.9992 99.62 33.21 50.01
7.1.05 6.5632 7.9992 99.61 33.21 49.98
7.1.06 6.6953 7.9992 99.61 33.30 49.97
7.1.07 5.9916 7.9991 99.60 33.15 49.99
7.1.08 5.0534 7.9990 99.58 33.26 50.02
7.1.09 6.1898 7.9991 99.61 33.26 50.05
7.1.10 5.9088 7.9990 99.63 33.23 49.95
7.2.01 5.6415 7.9996 99.61 33.59 50.00
boat.512 7.1914 7.9992 99.61 33.42 49.97
elaine.512 7.5060 7.9992 99.60 33.37 49.96
gray21.512 4.3923 7.9993 99.61 33.37 50.03
numbers.512 7.7292 7.9994 99.60 33.36 50.01
ruler.512 0.5000 7.9987 99.61 33.77 49.95
testpat.1k 4.4077 7.9998 99.62 33.43 50.01

Mean value 5.9304 7.9988 99.61 33.38 50.01
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NPCR¼ ∑M
m ¼ 1∑

N
n ¼ 1Bðm;nÞ
MN

� 100% ð19Þ

where

Bðm;nÞ ¼ 1 for E1ðm;nÞ≠E2ðm;nÞ
0 otherwise

�

After applying the differential attack, the UACI calcu-
lates the average value of changed pixels between two
encrypted images while the NPCR measures the percen-
tage of the changed pixel numbers between two encrypted
images. Table 3 shows the UACI and NPCR results of the
proposed PSCS-IE algorithm using the same differential
attack to the 28 test images used in Section 6.2.2. As can be
seen, the average UACI and NPCR are 33.38% and 99.61%,
respectively. They are close to their corresponding
expected values of grayscale images with 33.464% for the
UACI and 99.609% for the NPCR proved in [36]. This further
proves that the PSCS-IE algorithm shows excellent perfor-
mance in against differential attacks.

6.4. Strict avalanche criterion

Different from the NPCR and UACI that quantitatively
evaluate the pixel-level changes, the strict avalanche



Fig. 11. One single pixel change in the original image leads to significant changes in the encrypted image. (a) the original and encrypted Clock images;
(b) the Clock image with a single pixel change and its encrypted one; (c) image differences between the original and encrypted ones.

Fig. 12. Noise attacks to different algorithms in image reconstruction: the top row shows the images reconstructed from the encrypted image with 1%
Gaussian noise; the bottom row shows the images reconstructed from the encrypted image with 5% Salt and Pepper Noise; the original image in Fig. 4(a) is
encrypted by: (a) the proposed PSCS-IE algorithm; (b) the Liao's algorithm [4]; (c) the Wu's algorithm [40].
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criterion (SAC) is proposed to observe the bit-level
changes. The SAC states that a very small difference (i.e.
one bit change) in the input will lead to an avalanche
change in the output. According the SAC's definition in
[37], we define the Number of Bit Change Rate (NBCR) in
Eq. (20) to measure the SAC performance. The NBCR
calculates the percentage of changed bit numbers between
two bit streams. The ideal NBCR is 50% in average [38]:

NBCR¼ Hm½S1; S2�
Lb

� 100% ð20Þ

where S1 and S2 are two bit streams with the bit length of
Lb; The function Hm½�� is to calculate the Hamming distance
of two bit streams.

Different from the differential attack, we get the modified
image by changing the lowest bit of pixel value in [150, 100].
Then, after encryption,we convert two encrypted images into
bit streams. Their NBCR is measured using Eq. (20). Table 3
lists the NBCR results. As can be seen, the average NBCR
value of all images is 50.01% which is close to the ideal NBCR
50%. The proposed PSCS-IE algorithm meets the requirement
of the strict avalanche criterion.

6.5. Noise attack

Almost all transmission channels are noise channels
[39]. Data propagating over channels will be infected with
different types of noise including the Gaussian noise and
Salt and Pepper noise. An encryption algorithm should
immune these noise infections (or attacks).

Fig. 12 shows the simulation results of noise analysis for
different algorithms. In this experiment, the original image
uses the image in Fig. 4(a). It is encrypted by the proposed
PSCS-IE algorithm, Liao's algorithm [4] and Wu's algorithm
Fig. 13. Data loss attack to different encryption algorithms: the top row shows
applied; the bottom row shows the reconstructed images by corresponding algo
algorithm [40].
[40], and then added with 1% Gaussian noise and 5% Salt
and Pepper noise, respectively. These encrypted images
with noise are reconstructed by the corresponding algo-
rithms. As can be seen from the reconstructed results in
Fig. 12, the Liao's and Wu's algorithms obtain noise-like
images (Fig. 12(b) and (c)) and fail to recover the original
information. However, the proposed PSCS-IE algorithm
successfully reconstructs the original image with pleasant
visual quality even containing noise. This demonstrates
that the PSCS-IE algorithm outperforms two compared
algorithms with respect to noise effects.
6.6. Data loss attack

The encrypted data may be partially modified or lost
during transmission. An encryption algorithm should have
the capability to immune the effect of the data loss. To
perform data loss analysis, this section compares the
proposed PSCS-IE algorithm with the AES, Liao's algorithm
[4] and Wu's algorithm [40]. A “plane” image is encrypted
by these four algorithms and immediately applied by a
square pixel cutting with size of 40�40. These resulting
images are then reconstructed by the corresponding algo-
rithms as shown in Fig. 13. As can be seen from the
reconstructed images, the data loss of the AES concen-
trates in a single large area. This may lead to the important
information loss. The reconstructed images by the Liao's
and Wu's algorithms are noise-like images, resulting in a
complete loss of original information. By separating the
data loss in a large area into small pieces and distributing
them through the entire image, the PSCS-IE algorithm
keeps the most important visual information in the
the encrypted images by different algorithms with a square data cutting
rithms. (a) AES; (b) the PSCS-IE; (c) the Liao's algorithm [4]; (d) the Wu's
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original image and thus outperforms the AES, Liao's and
Wu's algorithms in the data loss attacks.

7. Conclusion

In this paper, we have introduced a new parametric
switching chaotic system (PSCS). The PSCS embeds three
well-known 1D chaotic sequences into one simple system.
It has shown general properties, including the Sine and
Tent maps as special cases, and complex chaotic behaviors
due to the parameter-dependent outputs. The new PSCS is
easy to be implemented in software and hardware. The 1D
and 2D PSCS transforms have been proposed for efficiently
scrambling data streams and images, respectively.

To investigate the PSCS's applications in image proces-
sing, we have introduced an image encryption algorithm
using the proposed PSCS and its transforms. Simulation
results have demonstrated that the proposed PSCS-IE
algorithm shows excellent performance in encrypting
different types of images. Security analysis has proved
that the PSCS-IE algorithm is able to encrypt images with a
high level of security and outperforms existing algorithms
with respect to different tests and attacks.
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